

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Kinetic Energy Harvesting

NiPS Summer School 2017 June 30th - July 3rd - Gubbio (Italy)

Francesco Cottone

NiPS lab, Physics Dep., Università di Perugia, Italy francesco.cottone at unipg.it

Outline

- Motivations of energy harvesting
- Introduction to Kinetic Energy Harvesting
- Theoretical model
- Macro to micro/nano Kinetic Energy Harvesting: scaling problems and examples
- Final considerations

What is an energy harvester ?

Power budget

Historical human-made energy harvesters

Wind mill (Origin: Persia, 3000 years BC)

Sailing ship (XVI-XVII century)

Crystal radio - 1906

SELF-powered by Radio Frequencies !!!

First automatic wristwatch, Harwood, c. 1929 (Deutsches Uhrenmuseum, Inv. 47-3543)

First automatic watch. <u>Abraham-Louis Perrelet</u>, Le Locle. 1776

Self-charging Seiko wristwatch 1988

Energy havesting applications

Structural Monitoring

02/07/2014 - Belo Horizonte (Brazil) (birdge collapse at FIAT factory)

Environmental Monitoring

Military applications

Healthcare sensors

Emergency medical response Monitoring, pacemaker, defibrillators

Nanomedicine

Vibration sources

http://realvibration.nipslab.org

NiPS Summer School 2017 – June 30th - July 3rd - Gubbio (Italy) – F. Cottone

Vibration sources

Energy Source	Characteristics	Efficiency	Harvested Power
Light	Outdoor Indoor	10~24%	100 mW/cm ² 100 µW/cm ²
Thermal	Human Industrial	~0.1% ~3%	60 μW/cm ² ~1-10 mW/cm ²
Vibration	~Hz–human ~kHz–machines	25~50%	~4 µW/cm ³ ~800 µW/cm ³
RF	GSM 900 MHz WiFi	~50%	0.1 μW/cm ² 0.001 μW/cm ²

Source: White Paper - Texas Instruments 2005

An average human walking up a mountain expends around 200 Watts of power.

The most amount of power your iPhone accepts when charging is 2.5 Watts.

Vibration Energy Harvesting: research

Vibration Energy Harvesting: scale

Vibration energy harvesting

Electromagnetic

Electrostatic/Capacitive

Inertial generators requires only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

At micro/nano scale direct force generators are much more efficient because not limited by the inertial mass!!!

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L \neq F(t) \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases} \begin{bmatrix} m\ddot{z} - \dot{V}_L + \dot{V}_L + \dot{V}_L + \dot{V}_L + \dot{V}_L \end{bmatrix}$$

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L \neq -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

Inertial generators requires only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

Power fluxes

$$m\ddot{z}\dot{z} + d\dot{z}^{2} + \frac{dU(z)}{dz}\dot{z} + \alpha V_{L}\dot{z} = F(t)\dot{z}$$

$$P_{m}(t) = F(t)\cdot\dot{z}(t) \qquad P_{m}(t) = -m\ddot{y}\cdot\dot{z} = -\rho l^{3}\cdot\dot{z}$$

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

 $\alpha, \lambda, \omega_c, \omega_i$ Parameters that depends only on the transduction technique!

For LINEAR mechanical oscillators with elastic potential well

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

Laplace transform

$$\ddot{y} = Y_0 e^{j\omega t} \qquad \Longrightarrow \qquad \begin{pmatrix} ms^2 + ds + k & \alpha \\ -\lambda \omega_c s & s + \omega_c \end{pmatrix} \begin{pmatrix} Z \\ V \end{pmatrix} = \begin{pmatrix} -mY \\ 0 \end{pmatrix}$$

$$Z = \frac{-mY}{\det A}(s + \omega_c) = \frac{-mY \cdot (s + \omega_c)}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c},$$

$$V = \frac{-mY}{\det A} \lambda \omega_c s = \frac{-mY \cdot \lambda \omega_c s}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha \lambda \omega_c + d\omega_c)s + k\omega_c}$$

For LINEAR mechanical oscillators

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

By substituting s=j ω in , we can calculate the electrical **power dissipated across the resistive load**

$$P_{e}(\omega) = \frac{|V|^{2}}{R_{L}} = \frac{Y_{0}^{2}}{2R_{L}} \left| \frac{m\lambda\omega_{c}j\omega}{(\omega_{c} + j\omega)(-m\omega^{2} + dj\omega + k) + \alpha\lambda\omega_{c}j\omega} \right|^{2}$$

In the approximate version, at resonance $\omega = \omega_n$, (William et al.)

$$P_{e} = \frac{m\zeta_{e}\omega_{n}^{3}Y_{0}^{2}}{4(\zeta_{e} + \zeta_{m})^{2}} = \frac{m^{2}d_{e}\omega_{n}^{4}Y^{2}}{2(d_{e} + d_{m})^{2}}$$

Where ω_c , λ and α are included in the electrical damping **factor** d_e

molecule becomes elongated and polarized

Stress-to-charge conversion

direct piezoelectric effect

Biological

- Bones
- <u>DNA !!!</u>

Naturally-occurring crystals

- <u>Berlinite</u> (AIPO₄), a rare <u>phosphate mineral</u> that is structurally identical to quartz
- <u>Cane sugar</u>
- <u>Quartz</u> (SiO₂)
- <u>Rochelle salt</u>

Man-made ceramics

- <u>Barium titanate</u> (BaTiO₃)—Barium titanate was the first piezoelectric ceramic discovered.
- Lead titanate (PbTiO₃)
- Lead zirconate titanate (Pb[Zr_xTi_{1-x}]O₃ 0≤x≤1)—more commonly known as *PZT*, lead zirconate titanate is the most common piezoelectric ceramic in use today.
- Lithium niobate (LiNbO₃)

Polymers

• <u>Polyvinylidene fluoride</u> (PVDF): exhibits piezoelectricity several times greater than quartz. Unlike ceramics, long-chain molecules attract and repel each other when an electric field is applied.

 $S = [s_E]T + [d^t]E$ $D = [d]T + [\varepsilon_T]E$

 $T = \left\lceil c^E \right\rceil S - \left\lceil e^t \right\rceil E$

 $D = \left[e \right] S + \left[\varepsilon^{S} \right] E$

Strain-charge

Stress-charge

- S = strain vector (6x1) in Voigt notation
- T = stress vector (6x1) [N/m²]
- s_E = compliance matrix (6x6) [m²/N]
- c^E = stifness matrix (6x6) [N/m²]
- d = piezoelectric coupling matrix (3x6) in Strain-Charge [C/N]
- D = electrical displacement (3x1) [C/m²]
- e = piezoelectric coupling matrix (3x6) in Stress-Charge [C/m²]
- ε = electric permittivity (3x3) [F/m]
- E = electric field vector (3x1) [N/C] or [V/m]

converse piezoelectric effect

$$\begin{bmatrix} S_1\\S_2\\S_3\\S_4\\S_5\\S_6 \end{bmatrix} = \begin{bmatrix} s_{11}^E & s_{12}^E & s_{13}^E & 0 & 0 & 0 & 0 \\ s_{21}^E & s_{22}^E & s_{23}^E & 0 & 0 & 0 & 0 \\ s_{31}^E & s_{32}^E & s_{33}^E & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44}^E & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{55}^E & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{55}^E & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66}^E = 2 \left(s_{11}^E - s_{12}^E \right) \end{bmatrix} \begin{bmatrix} T_1\\T_2\\T_3\\T_4\\T_5\\T_6 \end{bmatrix} + \begin{bmatrix} 0 & 0 & d_{31}\\0 & 0 & d_{32}\\0 & 0 & d_{33}\\0 & d_{24} & 0 \\ d_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} E_1\\E_2\\E_3 \end{bmatrix}$$

direct piezoelectric effect

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

Voigt notation is used to represent a symmetric tensor by reducing its order.

Due to the symmetry of the stress tensor, strain tensor, and stiffness tensor, only 21 elastic coefficients are independent. *S* and *T* appear to have the "vector form" of 6 components. Consequently, *s* appears to be a 6 by 6 matrix instead of rank-4 tensor.

NiPS Summer School 2017 – June 30th - July 3rd - Gubbio (Italy) – F. Cottone

Depending on the independent variable choice 4 piezoelectric coefficients are defined:

$$d_{ij} = \left(\frac{\partial D_i}{\partial T_j}\right)^E = \left(\frac{\partial S_j}{\partial E_i}\right)^T$$
$$e_{ij} = \left(\frac{\partial D_i}{\partial S_j}\right)^E = -\left(\frac{\partial T_j}{\partial E_i}\right)^S$$
$$g_{ij} = -\left(\frac{\partial E_i}{\partial T_j}\right)^D = \left(\frac{\partial S_j}{\partial D_i}\right)^T$$
$$h_{ij} = -\left(\frac{\partial E_i}{\partial S_j}\right)^D = -\left(\frac{\partial T_j}{\partial D_i}\right)^S$$

Characteristic	PZT-5H	BaTiO3	PVDF	AlN (thin film)
d ₃₃ (10 ⁻¹⁰ C/N)	593	149	-33	5,1
d ₃₁ (10 ⁻¹⁰ C/N)	-274	78	23	-3,41
k ₃₃	0,75	0,48	0,15	0,3
k ₃₁	0,39	0,21	0,12	0,23
Er	3400	1700	12	10,5

$$k_{31}^2 = \frac{El.energy}{Mech.energy} = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$$

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a piezoelectric material. It is defined as the ratio between the mechanical energy converted and the electric energy input or the electric energy converted per mechanical energy input

Ep and *Es* are the Young's modulus of piezo layer and steel substrate respectively

Governing equations

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

$$\mathbf{\omega} = kd_{31} / h_p k_2, \qquad \lambda = \alpha R_L,$$
$$\omega_c = 1 / R_L C_p, \qquad \omega_i = 1 / R_i C_p,$$

$$k = k_1 k_2 E_p,$$

$$k_1 = \frac{2I}{b(2l_b + l_m - l_e)},$$

$$k_2 = \frac{3b(2l_b + l_m - l_e)}{l_b^2 \left(2l_b + \frac{3}{2}l_m\right)},$$

$$b = \frac{h_s + h_p}{2},$$

$$I = 2\left[\frac{w_b h_p^3}{12} + w_b h_p b^2\right] + \frac{E_s / E_p w_b h_s^3}{12},$$

Inertia area moment of the beam

Electromagnetic conversion

Electrostatic conversion

Electrostatic conversion

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, Applied Physics Letters 2015.

Figure of merit

Mitcheson, P. D., E. M. Yeatman, et al. (2008).

Figure of merit

$$FoM_V = \frac{Useful Power Output}{\frac{1}{16}Y_0\rho_{Au}Vol^{\frac{4}{3}}\omega^3}$$

Bandwidth figure of merit

$$\mathrm{FoM}_{\mathrm{BW}} = \mathrm{FoM}_{V} imes rac{\delta \omega_{1 \, \mathrm{dB}}}{\omega}$$

Frequency range within which the output power is less than 1 dB below its maximum value

Galchev et al. (2011)

Mitcheson, P. D., E. M. Yeatman, et al. (2008).

Comparison of conversion techniques

Technique	Advantages 🙂	Drawbacks 😕
Piezoelectric	 high output voltages well adapted for miniaturization high coupling in single crystal no external voltage source needed 	 expensive small coupling for piezoelectric thin films large load optimal impedance required (MΩ) Fatigue effect
Electrostatic	 suited for MEMS integration good output voltage (2-10V) possiblity of tuning electromechanical coupling Long-lasting 	 need of external bias voltage relatively low power density at small scale
Electromagnetic	 good for low frequencies (5-100Hz) no external voltage source needed suitable to drive low impedances 	 inefficient at MEMS scales: low magnetic field, micro- magnets manufacturing issues large mass displacement required.

Microscale energy harvesters

MEMS-based drug delivery systems

Bohm S. et al. 2000

Heart powered pacemaker

Pacemaker consumption is **40uW**.

Beating heart could produce **200uW** of power

Body-powered oximeter

Leonov, V., & Vullers, R. J. (2009).

Micro-robot for remote monitoring

The input power a 20 mg robotic fly is **10 – 100 uW**

A. Freitas Jr., Nanomedicine, Landes Bioscience, 1999

D. Tran, Stanford Univ. 2007

Microscale energy harvesters

Piezoelectric

ZnO nanowires Wang, Georgia Tech (2005)

Chang. MIT 2013

M. Marzencki 2008 – TIMA Lab (France)

piezoelectric AIN thin layer

Aluminium electrode

seismic mass

D. Briand, EPFL 2010

Microscale energy harvesters

Electrostatic and electromagnetic

Mitcheson 2005 (UK)

2.5uW @ 1g

Electrostatic generator 20Hz

EM generator, Miao et al. 2006

Cottone F., Basset P. ESIEE Paris 2013

First order power calculus with William and Yates model

$\omega = 2\pi C$	$\overline{E} h$
$\omega_n = 2\pi C_n$	$\overline{ ho} \overline{l^2}$

$k - \xi$	Ewh^3	
$\kappa - \zeta$	l^3	

Boudary conditions	C1
doubly clamped	1,03
cantilever	0,162

Boudary conditions	Uniform load ξ	Point load ξ
doubly clamped	32	16
cantilever	0,67	0,25

- Low efficiency off resonance
- High resonant frequency at miniature scales
- Power → A²/⁴ where A is the acceleration and / the linear dimension

First order power calculus with William and Yates model

The instantaneous dissipated power by electrical damping is given by

$$P(t) = \frac{d}{dt} \int_{0}^{x} F(t) dx = \frac{1}{2} d_T \dot{x}^2$$

The velocity is obtained by the first derivative of steady state amplitude

At resonance, that is $\omega = \omega_n$, the maximum power is given by

 ω_n , the power can be maximized from the equation

$$P_{e} = \frac{m\zeta_{e}\omega_{n}^{3}Y_{0}^{2}}{4(\zeta_{e} + \zeta_{m})^{2}} = \frac{m^{2}d_{e}\omega_{n}^{4}Y^{2}}{2(d_{e} + d_{m})^{2}}$$

for a particular transduction mechanism forced at natural frequency

or with acceleration amplitude $A_0 = \omega_n^2 Y_0$.

$$P_{el} = \frac{m\zeta_e A^2}{4\omega_n(\zeta_m + \zeta_e)^2}$$

Max power when the condition $\zeta_e = \zeta_m$ is verified

First order power calculus with William and Yates model

$$m_{eff} = m_{beam} + 0.32m_{tip} = lwh\rho_{si} + 0.32(l/4)^3\rho_{si}$$

$$P_{el} = \frac{m\zeta_{e}A^{2}}{4\omega_{n}(\zeta_{m}+\zeta_{e})^{2}} = \frac{\left(lwh\rho_{si}+0.32(l/4)^{3}\rho_{mo}\right)}{8\omega_{n}\zeta_{m}}A^{2} = \frac{\left(lwh\rho_{si}+0.32(l/4)^{3}\rho_{mo}\right)}{16\pi C_{n}\sqrt{\frac{E}{\rho_{si}}}\frac{h}{l^{2}}\zeta_{m}}A^{2}$$

At max power condition $\zeta_{e}=\zeta_{m}$

Piezoelectric micro-pillars

Wang 2004

Piezoelectric micro-pillars

Hydrotermal synthesis Length: 15 μm Thickness: 4 – 6 um

A. Di Michele, G. Clementi, M. Mattarelli, F. Cottone

WD = 6.9 mm

Mag = 12.35 K X

Signal A = SE2

EHT = 15.00 kV

2 µm

Piezoelectric micro-pillars

Stress-strain equations

 $S = [s_E]T + [d^t]E$ $D = [d]T + [\varepsilon_T]E$

Strain-charge form

 $\omega_1 = \beta_1^2 \sqrt{\frac{EI}{\mu}} = \frac{3.515}{L^2} \sqrt{\frac{EI}{\mu}}$ Length: 17 µm Thickness: 5um First mode: 10.9 Mhz

A. Di Michele, G. Clementi, M. Mattarelli, F. Cottone

NiPS Laboratory – Department of Physics and Geology – University of Perugia

Piezoelectric micro-pillars, ribbons, nano-wires

- Implementation of vertically-aligned ZnO micropillars on IDE and other geometry (e.g. horionzontal)
- Use of the devive as VEH and vibration sensor
- Fabrication of same device with BaTiO3
- Use of the piezo pillars as micro electro-mechanical antenna

Piezoelectric ribbon:

Microantenna

Microfibre-Nanowire:

Final considerations

- **Kinetic energy harvesting systems** are promising technology to enable autonomous low-power wireless devices
- Main transduction techniques are piezoelectric, inductive and electrostatic: large research is beign carried out for both materials and device fabrication
- Theoretical model is complete for linear oscillator based VEH
- Reducing the size to micro and nano is challenging \rightarrow The application decide wether it si convenient reone macro-scale VEH
- Inertial vibration energy harvesters are very limited at small scale $P \sim l^3 \rightarrow$ direct force piezoelectric/electrostatic devices are more efficient at nanoscale.